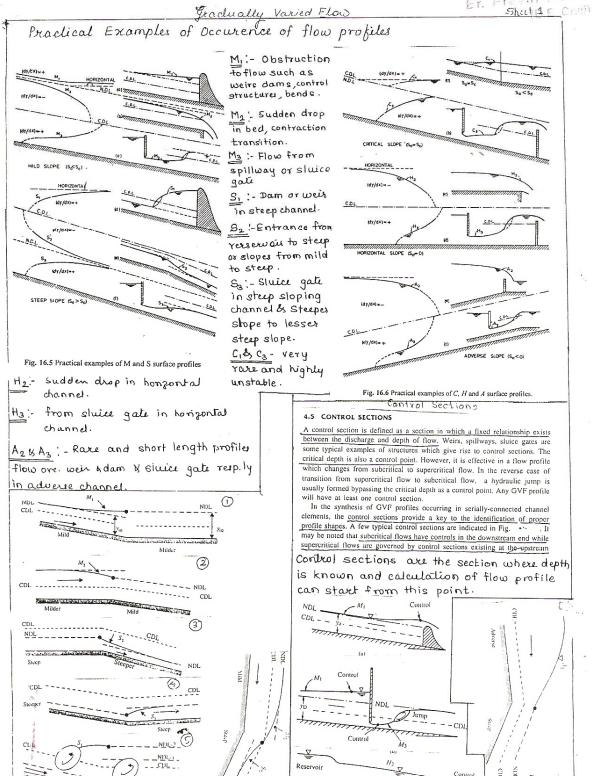
## Notes by-

## Pravin S Kolhe,


BE(Civil), Gold Medal, MTech (IIT-K)

**Assistant Executive Engineer,** 

Water Resources Department,

www.pravinkolhe.com

" Break in gradi



6

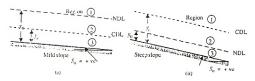
Horizontal bed

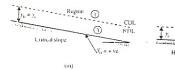
Mild

Break in grade

## 4.3 CLASSIFICATION OF FLOW PROFILES

In a given channel,  $y_0$  and  $y_c$  are two fixed depths if  $Q_c$ , n and  $S_0$  are fixed. Also, there are three possible relations between  $y_0$  and  $y_c$  as (i)  $y_0 > y_c$ , (ii)  $y_0 < y_c$  and (iii)  $y_0 = y_c$ . Further, there are two cases where  $y_0$  does not exist, i.e. when (a) the channel bed is horizontal,  $(S_0 = 0)$ , (b) when the channel has an adverse slope,  $(S_0$  is -ve). Based on the above, the channels are classified into five categories as indicated in Table 4.1.


For each of the five categories of channels, lines representing the critical depth and normal depth (if it exists) can be drawn in the longitudinal section.


These would divide the whole flow space into three regions as:

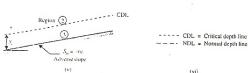
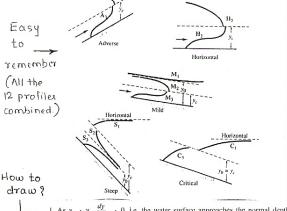

Region 1: Space above the topmost line
Region 2: Space above the topmost line and the next lower line
Region 3: Space between top line and the next lower line
Region 3: Space between the second line and the bed
Figure 4.2 shows these regions in the various categories of channels.

Table 4.1 Classification of Channels


| SI. | No. | Channel<br>category | Symbol | Characteristic condition | Remark                             |
|-----|-----|---------------------|--------|--------------------------|------------------------------------|
|     | 1 2 | Mild slope          | M      | $y_0 > y_c$              | Subcritical flow at normal depth   |
|     |     | Steep slope         | 5      | $y_c > y_0$              | Supercritical flow at normal depth |
| 3   | (   | Critical slope      | C      | $y_c = y_0$              | Critical flow at normal depth      |
| 4   | 1   | forizontal bed      | H      | $S_0 = 0$                | Cannot sustain uniform flow        |
| 5   | 1   | Adverse slope       | A      | $S_0 < 0$                | Cannot sustain uniform flow        |







| Channel        | Region                                             | Condition                                             | Type              |  |
|----------------|----------------------------------------------------|-------------------------------------------------------|-------------------|--|
| Mild slope     | $\left\{\begin{array}{c}1\\2\\3\end{array}\right.$ | $y > y_0 > y_c$<br>$y_0 > y > y_c$<br>$y_0 > y_c > y$ | $M_1$ $M_2$ $M_3$ |  |
| Steep slope    | $\left\{\begin{array}{c}1\\2\\3\end{array}\right.$ | $y > y_c > y_0$<br>$y_c > y > y_0$<br>$y_c > y_0 > y$ | $S_1$ $S_2$ $S_3$ |  |
| Critical slope | $\left\{\begin{array}{c}1\\3\end{array}\right\}$   | $y > y_0 = y_c$ $y < y_0 = y_c$                       | $C_1$ $C_3$       |  |
| Horizontal bed | { 2                                                | $y > y_c$                                             | $H_2$             |  |
| Adverse slope  | { 2                                                | $y < y_c  y > y_c$                                    | $A_2$             |  |
|                | L 3                                                | $y < y_{i}$                                           | $\Lambda_3$       |  |



1. As  $y \to y_0$ ,  $\frac{dy}{dx} \to 0$ , i.e. the water surface approaches the normal depth line asymptotically.

2. As  $y \to y_c$ ,  $\frac{dy}{dx} \to \infty$ , i.e. the water surface meets the critical depth line

3.  $y \to \infty$ .  $\frac{dy}{dx} \to S_0$ , i.e. the water surface meets a very large depth as a horizontal asymptote.

Fig. 4.2 Regions of flow profiles

| Channel Slope          | Symbol         | Depth Relations | dy dx VIP | Type of profile | Type of flow  |
|------------------------|----------------|-----------------|-----------|-----------------|---------------|
|                        | None           | $y > y_0 > y_0$ |           | None            | None          |
| Horizontal $[S_0 = 0]$ | H <sub>2</sub> | $y_0 > y > y_c$ |           | Drawdown        | Subcritical   |
|                        | Н3             | $y_0 > y_c > y$ | +         | Backwater ·     | Supercritica  |
| Mild                   | M <sub>1</sub> | $y > y_0 > y_c$ | +         | Backwater       | Subcritical.  |
| $[0 < S_0 < S_c]$      | M <sub>2</sub> | $y_0 > y > y_i$ | -         | Drawdown        | Subcritical   |
|                        | M <sub>3</sub> | $y_0 > y_c > y$ | +         | Backwater       | Supercritica  |
| Critical               | Cı             | $y > y_c = y_0$ | +         | Backwater       | Subcritical   |
| $[S_0 = S_c > 0]$      | None           | $y_c = y = y_o$ |           | None            | None          |
|                        | C <sub>3</sub> | $y_c = y_0 > y$ | +         | Backwater       | Supercritical |
| Steep                  | Sı             | $y > y_c > y_0$ | +         | Backwater       | Subcritical   |
| $[S_0 > S_c > 0]$      | S <sub>2</sub> | $y_c > y > y_0$ | -         | Drawdown        | Supercritical |
|                        | S <sub>3</sub> | $y_c > y_0 > y$ | +         | Backwater       | Supercritical |
| Adverse                | None           |                 |           | None            | None          |
| $[S_0 < 0]$            | A <sub>2</sub> | $y > y_c$       | -         | Drawdown        | Subcritical   |
|                        | A <sub>3</sub> | $y_c > y$       | +         | Backwater       | Supercritical |

| 101:                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{dy}{dx} = S_0 \frac{1 - \frac{S_y}{S_0}}{1 - \frac{Q^2T}{gA^3}} \qquad \frac{dy}{dx} = S_0 \left[ \frac{\left(\frac{y}{y}\right)^{10/3}}{1 - \left(\frac{y}{y}\right)^2} \right] Manny$ |
| \frac{dy}{dx} = So \frac{1 - (yc/y)^3}{1 - (yc/y)^3} Chesy.                                                                                                                                    |
| in abore equation if Mumerator/Senominalor  dy = positive when + ve or - ve  the is called backwater                                                                                           |
| dy = negative when +ve or -ve +ve = -ve is called drawdown.                                                                                                                                    |
| $\frac{dy}{dx} > 0 \text{ if (i) } y > y_p \text{ and } y > y_e \text{ or}$ $(+ye) \text{ (ii) } y < y_0 \text{ and } y < y_e$                                                                 |
| Similarly, $\frac{dy}{d\tau} < 0$ if (i) $y_c > y > y_0$ or $(-v^{\frac{1}{2}})$ (ii) $y_0 > y > y_c$                                                                                          |

Refer Chezyi eq? of dyldx