Notes by-

Pravin S Kolhe,

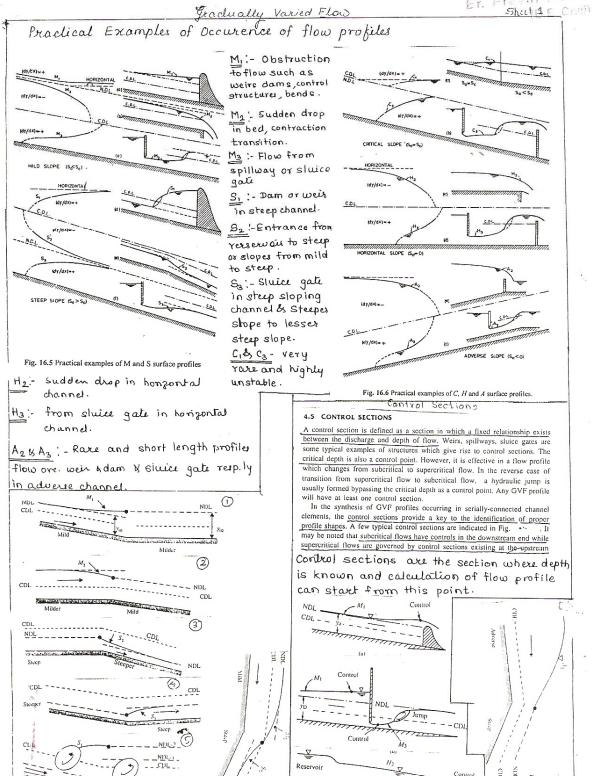
BE(Civil), Gold Medal, MTech (IIT-K)

Assistant Executive Engineer,

Water Resources Department,

www.pravinkolhe.com

" Break in gradi



6

Horizontal bed

Mild

Break in grade

4.3 CLASSIFICATION OF FLOW PROFILES

In a given channel, y_0 and y_c are two fixed depths if Q_c , n and S_0 are fixed. Also, there are three possible relations between y_0 and y_c as (i) $y_0 > y_c$, (ii) $y_0 < y_c$ and (iii) $y_0 = y_c$. Further, there are two cases where y_0 does not exist, i.e. when (a) the channel bed is horizontal, $(S_0 = 0)$, (b) when the channel has an adverse slope, $(S_0$ is -ve). Based on the above, the channels are classified into five categories as indicated in Table 4.1.

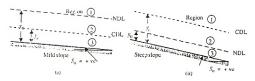
For each of the five categories of channels, lines representing the critical depth and normal depth (if it exists) can be drawn in the longitudinal section.

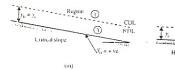
These would divide the whole flow space into three regions as:

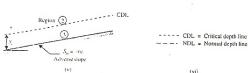
Region 1: Space above the topmost line
Region 2: Space above the topmost line and the next lower line
Region 3: Space between top line and the next lower line
Region 3: Space between the second line and the bed
Figure 4.2 shows these regions in the various categories of channels.

Table 4.1 Classification of Channels

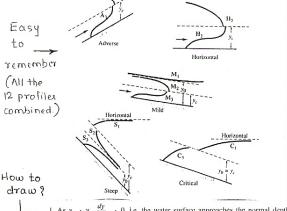
SI.	No.	Channel category	Symbol	Characteristic condition	Remark
	1 2	Mild slope	M	$y_0 > y_c$	Subcritical flow at normal depth
		Steep slope	5	$y_c > y_0$	Supercritical flow at normal depth
3	(Critical slope	C	$y_c = y_0$	Critical flow at normal depth
4	1	forizontal bed	H	$S_0 = 0$	Cannot sustain uniform flow
5	1	Adverse slope	A	$S_0 < 0$	Cannot sustain uniform flow







Channel	Region	Condition	Type	
Mild slope	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$	$y > y_0 > y_c$ $y_0 > y > y_c$ $y_0 > y_c > y$	M_1 M_2 M_3	
Steep slope	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$	$y > y_c > y_0$ $y_c > y > y_0$ $y_c > y_0 > y$	S_1 S_2 S_3	
Critical slope	$\left\{\begin{array}{c}1\\3\end{array}\right\}$	$y > y_0 = y_c$ $y < y_0 = y_c$	C_1 C_3	
Horizontal bed	{ 2	$y > y_c$	H_2	
Adverse slope	{ 2	$y < y_c y > y_c$	A_2	
	L 3	$y < y_{i}$	Λ_3	



1. As $y \to y_0$, $\frac{dy}{dx} \to 0$, i.e. the water surface approaches the normal depth line asymptotically.

2. As $y \to y_c$, $\frac{dy}{dx} \to \infty$, i.e. the water surface meets the critical depth line

3. $y \to \infty$. $\frac{dy}{dx} \to S_0$, i.e. the water surface meets a very large depth as a horizontal asymptote.

Fig. 4.2 Regions of flow profiles

Channel Slope	Symbol	Depth Relations	dy dx VIP	Type of profile	Type of flow
	None	$y > y_0 > y_0$		None	None
Horizontal $[S_0 = 0]$	H ₂	$y_0 > y > y_c$		Drawdown	Subcritical
	Н3	$y_0 > y_c > y$	+	Backwater ·	Supercritica
Mild	M ₁	$y > y_0 > y_c$	+	Backwater	Subcritical.
$[0 < S_0 < S_c]$	M ₂	$y_0 > y > y_i$	-	Drawdown	Subcritical
	M ₃	$y_0 > y_c > y$	+	Backwater	Supercritica
Critical	Cı	$y > y_c = y_0$	+	Backwater	Subcritical
$[S_0 = S_c > 0]$	None	$y_c = y = y_o$		None	None
	C ₃	$y_c = y_0 > y$	+	Backwater	Supercritical
Steep	Sı	$y > y_c > y_0$	+	Backwater	Subcritical
$[S_0 > S_c > 0]$	S ₂	$y_c > y > y_0$	-	Drawdown	Supercritical
	S ₃	$y_c > y_0 > y$	+	Backwater	Supercritical
Adverse	None			None	None
$[S_0 < 0]$	A ₂	$y > y_c$	-	Drawdown	Subcritical
	A ₃	$y_c > y$	+	Backwater	Supercritical

101:
$\frac{dy}{dx} = S_0 \frac{1 - \frac{S_y}{S_0}}{1 - \frac{Q^2T}{gA^3}} \qquad \frac{dy}{dx} = S_0 \left[\frac{\left(\frac{y}{y}\right)^{10/3}}{1 - \left(\frac{y}{y}\right)^2} \right] Manny$
\frac{dy}{dx} = So \frac{1 - (yc/y)^3}{1 - (yc/y)^3} Chesy.
in abore equation if Mumerator/Senominalor dy = positive when + ve or - ve the is called backwater
dy = negative when +ve or -ve +ve = -ve is called drawdown.
$\frac{dy}{dx} > 0 \text{ if (i) } y > y_p \text{ and } y > y_e \text{ or}$ $(+ye) \text{ (ii) } y < y_0 \text{ and } y < y_e$
Similarly, $\frac{dy}{d\tau} < 0$ if (i) $y_c > y > y_0$ or $(-v^{\frac{1}{2}})$ (ii) $y_0 > y > y_c$

Refer Chezyi eq? of dyldx